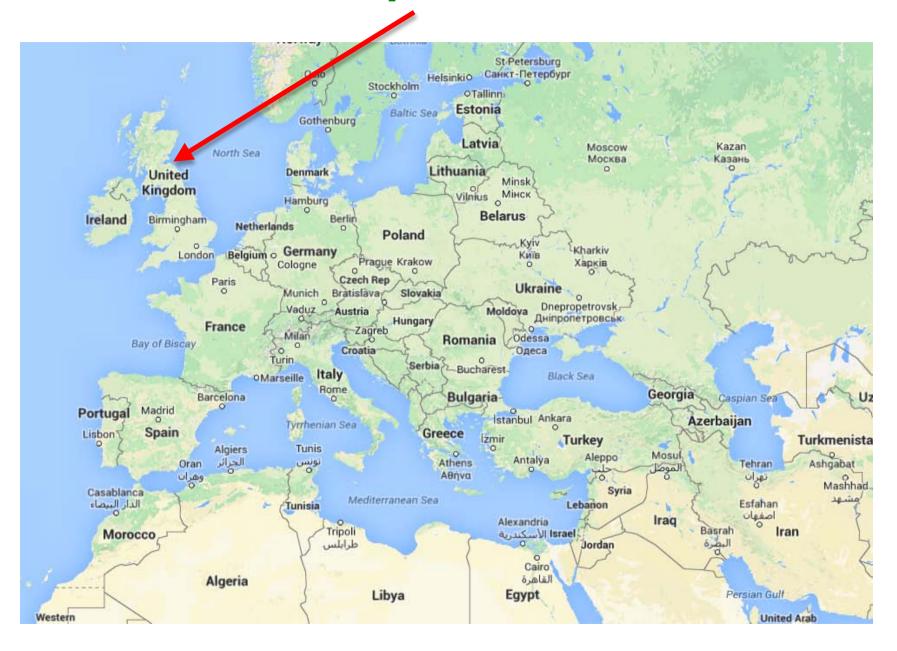
T³ Leuven, October 2016 – CAS in Statistics

Nevil Hopley

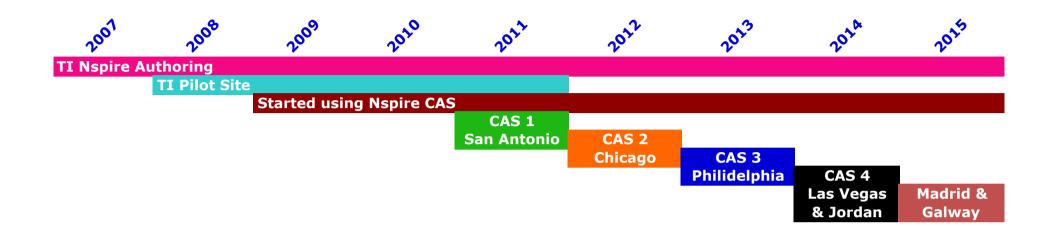
T³ National Trainer, Scotland & UK. Head of Mathematics Department

www.calculatorsoftware.co.uk/nspire

My Home

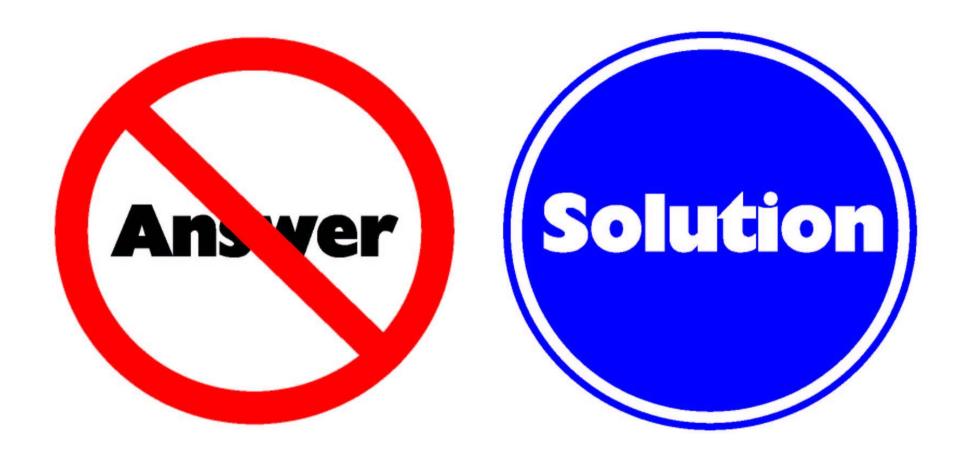


My CAS Timeline



CAS Talks at TI International & European Conferences

2011	My first 18 months of CAS usage
2012	Trigonometry and Rearranging Equations
2013	Linear Equations and Units
2014	Extending CAS with functions and programs
2015	CAS in Statistics (T ³ Europe, Madrid and
	USACAS ⁹ , Cleveland, Ohio)



Credits

Chris Harrow, Ohio, USA John Hanna, Honolulu, USA Pat Mara, Pueblo, USA

www.statlect.com/distri.htm

answers.yahoo.com/question/index?qid=20120403201 108AAlaU1o

math.stackexchange.com/questions/117926/finding-mode-in-binomial-distribution

Chris Harrow

casmusings.wordpress.com

 $\operatorname{expand}(\operatorname{heads}+\operatorname{tails})^6)$ $\operatorname{heads}^6+6\cdot\operatorname{heads}^5\cdot\operatorname{tails}+15\cdot\operatorname{heads}^4\cdot\operatorname{tails}^2+20\cdot\operatorname{heads}^3\cdot\operatorname{tails}^3+15\cdot\operatorname{heads}^2\cdot\operatorname{tails}^4+6\cdot\operatorname{heads}\cdot\operatorname{tails}^5+\operatorname{tails}^6$

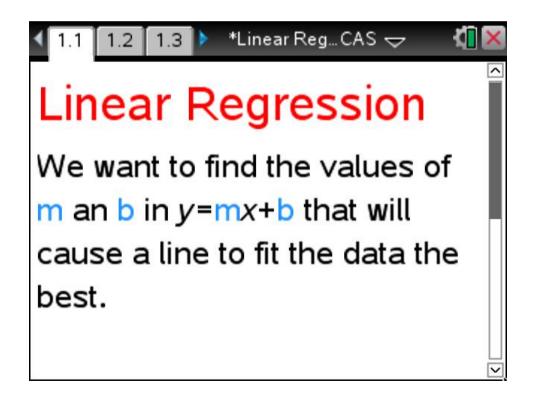
John Hanna

"LinReg Exposed!"

A talk from 2014 TI International Conference

Linear Regression CAS.tns (Nspire Google Group, 19 Nov 2014)

Linear Regression CAS - Pat Mara.tns



Today

Formulae for Standard Deviation

Discrete Uniform Distribution

Geometric Distribution

Laws of Expectation and Variance

Binomial Distribution

Poisson Distribution

Probability Generating Functions

www.calculatorsoftware.co.uk/nspire

Formulae for Standard Deviation

$$s^2 = rac{\sum\limits_{i=1}^{n}{(x_i - \overline{x})^2}}{n-1}$$
 or $s^2 = rac{\sum\limits_{i=1}^{n}{x_i}^2 - rac{(\sum x_i)^2}{n}}{n-1}$

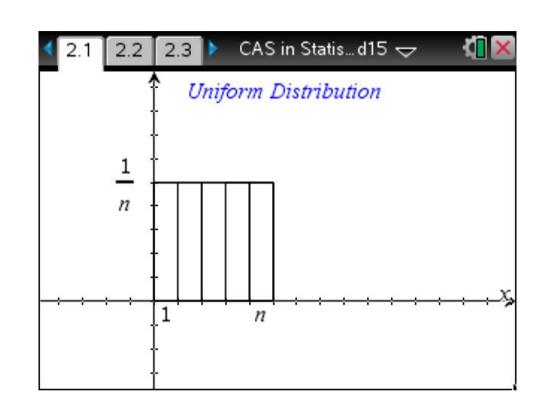
$$\sigma^2 = rac{\sum\limits_{i=1}^n \left(x_i - \overline{x}
ight)^2}{n} \qquad or \qquad \sigma^2 = rac{\sum\limits_{i=1}^n x_i^2 - rac{\left(\sum x_i
ight)^2}{n}}{n}$$

CAS in Statistics.tns pages 1.1 & 1.2

Discrete Uniform Distribution ~ U[1,n]

$$E(X) = \frac{\frac{1}{2}n(n+1)}{n} = \frac{1}{2}(n+1)$$

$$Var(X) = \frac{\frac{1}{12}n(n-1)(n+1)}{n}$$
$$= \frac{1}{12}(n^2 - 1)$$



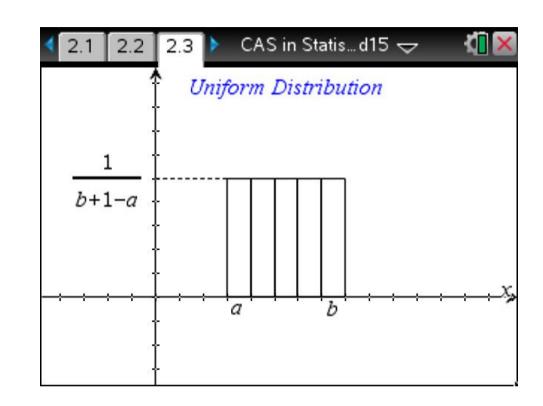
pages 2.1 & 2.2

Discrete Uniform Distribution ~ U[a,b]

$$X \sim U[a,b]$$

$$E(X) = \frac{1}{2}(a+b)$$

$$Var(X) = \frac{1}{12}[(b-a+1)^2 - 1]$$



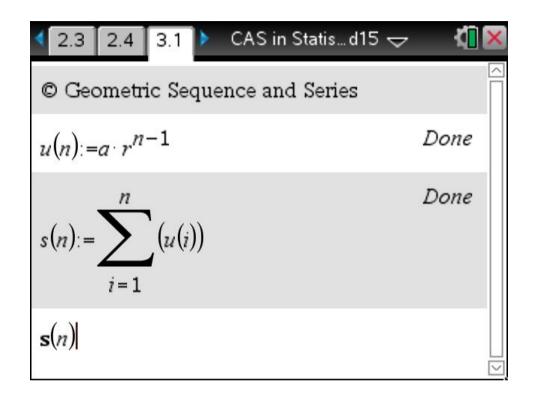
pages 2.3 & 2.4

Geometric Sequences & Series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$



pages 3.1 & 3.2 & 3.3

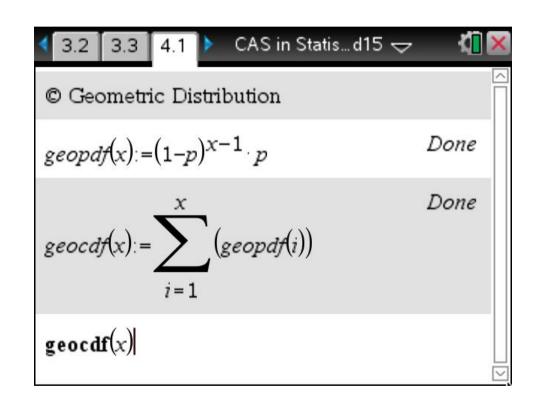
Geometric Distribution

X= number of trials until the first success
P(success on each trial) = p

$$P(X = x) = q^{x-1}p$$
$$P(X \le x) = 1 - q^x$$

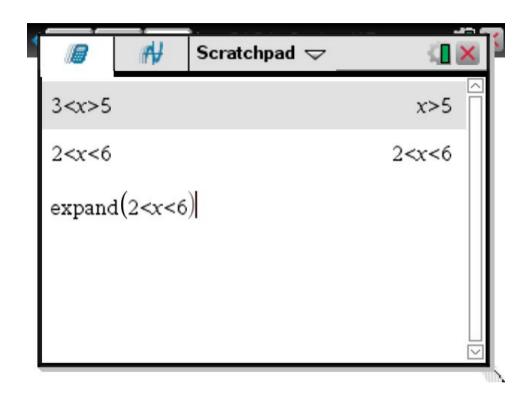
$$E(X) = \frac{1}{p}$$

$$Var(X) = \frac{q}{p}$$



pages 4.1 & 4.2 & 4.3

BONUS!

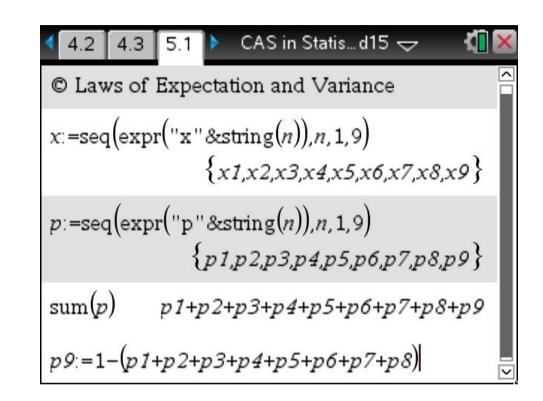


Scratchpad

Laws of Expectation and Variance

$$E(aX + b) = aE(X) + b$$

$$Var(aX+b) = a^2 Var(X)$$



pages 5.1 & 5.2

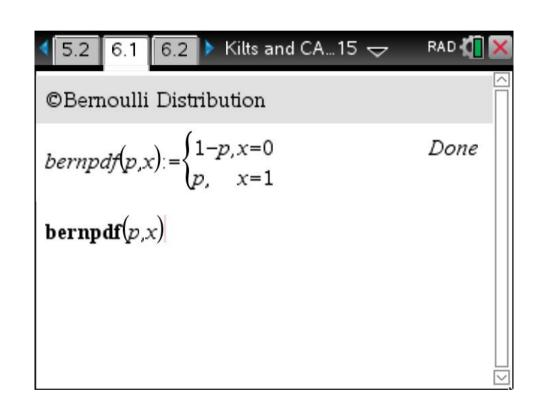
Bernoulli Distribution

X= number of successes in 1 trial
P(success on each trial) = p

$$P(X=x) = \begin{cases} 1-p & if \ x=0 \\ p & if \ x=1 \end{cases}$$

$$E(X) = p$$

$$Var(X) = pq$$



pages 6.1 & 6.2 & 6.3

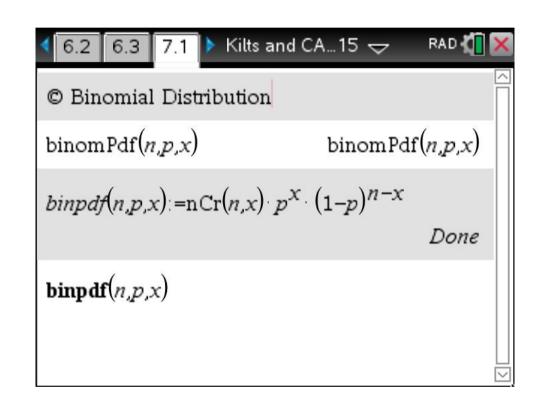
Binomial Distribution

X= number of successes in n trial P(success on each trial) = p

$$P(X=x) = {^{\scriptscriptstyle n}}C_{\scriptscriptstyle r}p^{\scriptscriptstyle x}(1-p)^{\scriptscriptstyle x}$$

$$E(X) = np$$

$$Var(X) = npq$$



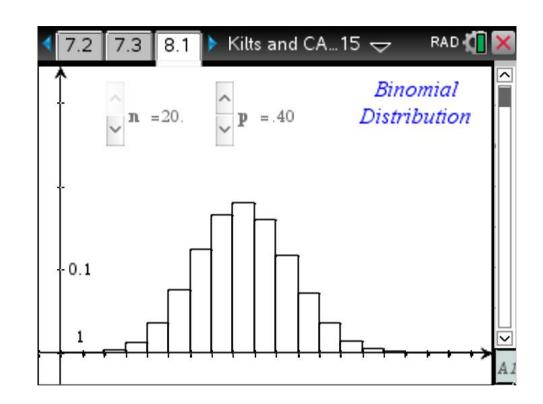
pages 7.1 & 7.2 & 7.3

Mode of Binomial Distribution

Mode is reached when:

$$P(X = x + 1) \le P(X = x)$$

$$\frac{P(X=x+1)}{P(X=x)} \le 1$$



pages 8.1 & 9.1

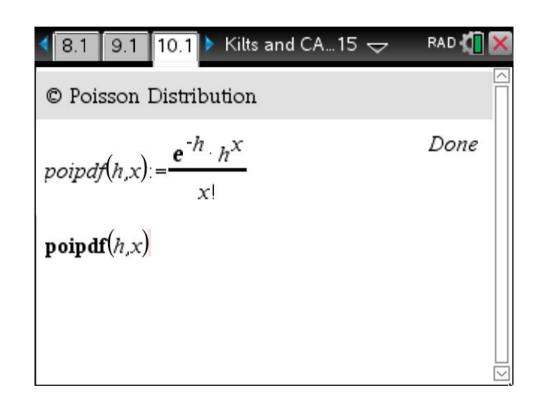
Poisson Distribution

X= number of events in a fixed interval mean rate of events = λ

$$P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$E(X) = \lambda$$

$$Var(X) = \lambda$$



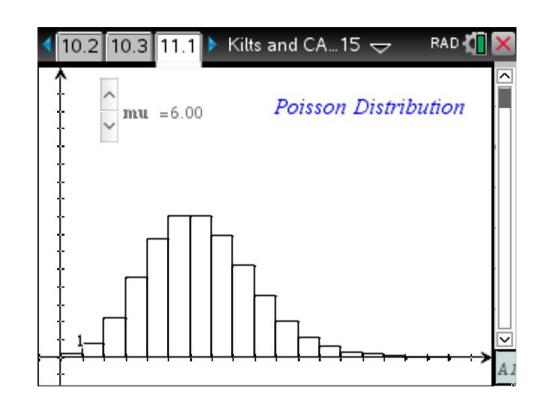
pages 10.1 & 10.2 & 10.3

Mode of Poisson Distribution

Mode is reached when:

$$P(X = x + 1) \le P(X = x)$$

$$\frac{P(X=x+1)}{P(X=x)} \le 1$$



pages 11.1 & 12.1

Probability Generating Functions

$$G_X(t) = P(X = 0) t^0 + P(X = 1) t^1 + P(X = 2) t^2 +$$
 $G_X(t) = \sum_{x=0}^{n} P(X = x) t^x$

A polynomial in t whose coefficients are the probabilities of the powers

E(X) and Var(X) for both B(n,p) and Poi(λ)
Unbiased & Consistent Estimators
Chi-Squared Distributions

Want Copies of Everything?

www.calculatorsoftware.co.uk/nspire

Thank you for coming to my talk.

Nevil Hopley

T³ National Trainer, Scotland & UK.

Head of Mathematics Department

CAS user on Handhelds and TI-Nspire iPad App

TI-Basic and Lua Programmer

Mountain Unicycler